What will it take to roll-out Test and Treat?

Ian Sanne CTU PI Wits HIV Research Group International Scientific Officer ACTG

- Combination prevention strategies
- Antiretroviral therapy for prevention
- Components of treatment expansion
- Economics of treatment
- Conclusions

Combination prevention

- Behavioural interventions "risk reduction"
- HIV testing "know your status"
- Treatment of sexually transmitted infections
- Male Medical Circumcision
- Treatment
- Pre-exposure prophylaxis
- Microbicides
- Vaccines

Benefit of early antiretroviral therapy treatment

Reduced transmission in discordant couples

- HPTN 052 96% reduction in HIV transmission
- Does the observed benefit at an individual level translate to a population benefit?

Prevent opportunistic infections and long-term complications

- Reduced TB incidence ^(1, 2, 3)
- Overall opportunistic infections, hospitalization, absenteeism and societal productivity
- Non-infectious complications: neurologic, viral associated cancers, cardiovascular and metabolic

Lawn S Lancet 2005; Pape B NEJM 2009 Fox M AIDS 2010, Hosseinipour IAS 2011;

Antiviral treatment as prevention

Extensive biological plausibility

- The concentration of HIV-1 in blood and genital tract correlates with sexual transmission
- Antiretroviral agents that concentrate in the genital tract reduce HIV-1 viral load
- Most observational reports indicate ART reduces transmission of HIV-1 in couples

Prevention of Transmission of HIV with ART

M Cohen, Y Chen, M McCauley, T Gamble, R Bollinger, Y Bryson, D Burns, D Celentano, S Chariyalertsak, F Conradie, L Cottle, G De Bruyn, V Elharrar, S Eshleman, M Essex, E Filho, S Godbole, B Grinsztejn, J Hakim, I Hoffman, M Hosseinipour, N Kumarasamy, J Kumwenda, J Makhema, A Martinez, K Mayer, S Mehendale, L Mills, K Nielsen, J Pilotto, E Piwowar-Manning, I Sanne, B Santos, T Taha, L Wang, S Safren, T Fleming, and the HPTN 052 Protocol Team

HPTN 052 Study Design

Stable, healthy, serodiscordant couples, sexually active CD4 count: 350 to 550 cells/mm³

Primary Transmission Endpoint Virologically-linked transmission events

Primary Clinical Endpoint

WHO stage 4 clinical events, pulmonary tuberculosis, severe bacterial infection and/or death

HPTN 052 Enrollment

Major reasons for exclusion: 3058 HIV+ but CD4 count out of range 2565 HIV- but HIV+ partner ineligible 308 Seroconcordant couples 155 Ineligible due to sexual history

HPTN 052 Enrollment

(Total Enrollment: 1763 couples)

HPTN 052: Baseline Characteristics

	Ind	lex	Partner			
	Immediate N = 886	Delayed N = 877	Immediate N = 893	Delayed N = 882		
Female	49%	50%	49%	47%		
Age (median)	33	32	32	32		
Married	94%	95%	93%	94%		
Any unprotected sex	6%	8%	8%	8%		
CD4 (median [IQR])	442 [373-522]	428 [357-522]				
HIV RNA log ₁₀ (median [IQR])	4.4 [3.8-4.9]	4.4 [3.9-4.9]				

HPTN 052: Baseline Characteristics

	Ind	ex	Partner			
		Delayed	Immediate	Delayed		
	N = 660	$N = \delta / f$	$N = \delta 95$	N = 002		
Female	49%	50%	49%	47%		
Age (median)	33	32	32	32		
Married	94%	95%	93%	94%		
Any unprotected sex	6%	8%	8%	8%		
CD4 (modian [IOP])	442	428				
	[373-522]	[357-522]				
HIV RNA log ₁₀	4.4	4.4				
(median [IQR])	[3.8-4.9]	[3.9-4.9]				

HPTN 052: HIV-1 Transmission

HPTN 052: HIV-1 Transmission

HPTN052: HIV-1 Transmissions

No. at Risk	o. at Risk						
Immediate	893	658	298	79	31	24	
Delayed	882	655	297	80	26	22	

No. at Risk	IE	a15 5	ince	Nand	John	zatio	
Immediate	893	658	298	79	31	24	
Delayed	882	655	297	80	26	22	

HPTN 052: Effect of ART

Proportion of participants with VL<400 at each visit

Months

HIV Transmission: CD4 Count and HIV-1 RNA

28 Linked Transmissions

Median proximal log₁₀ VL (range): 4.9 (2.6-5.8) Immediate arm: 2.6 (2.6-2.6) Delayed arm: 4.9 (2.6-5.8)

Median proximal CD4 (range): 400 (229-858) Immediate arm: 584 (584-584) Delayed arm: 391 (229-858)

HPTN 052 Prevention Conclusion

Early ART that suppresses viral replication led to 96% reduction of sexual transmission of HIV-1 in serodiscordant couples

Total cost and potential cost savings of the national antiretroviral treatment (ART) programme in South Africa 2010 to 2017

Gesine Meyer-Rath^{1,2,3},

Yogan Pillay⁴, Mark Blecher⁵, Alana Brennan^{1,2,3}, Lawrence Long^{2,3}, Leigh Johnson⁶, Harry Moultrie^{3,7}, Ian Sanne^{2,3}, Matthew Fox^{1,2,3,8}, Sydney Rosen^{1,2,3}

¹ Center for Global Health and Development, Boston University, US
 ² Health Economics and Epidemiology Research Office (HE²RO), Wits Health Consortium, South Africa
 ³ Faculty of Health Sciences, University of the Witwatersrand, South Africa
 ⁴ National Department of Health, South Africa
 ⁵ National Treasury, South Africa
 ⁶ Centre for Infectious Disease Epidemiology and Research, University of Cape Town, South Africa
 ⁷ Enhancing Children's HIV Outcomes (ECHO), Wits Health Consortium, South Africa
 ⁸ Department of Epidemiology, Boston University School of Public Health, US

Scenarios

Old South African Guidelines

Eligibility	Adults: CD4 <200 cells/mm ³ or WHO stage 4 Children: CD4 15% to 20% or WHO stage 3 or 4
Regimens	Adults: d4T + 3TC + EFV/NVP; AZT + ddl + LPV/r Children <3 yrs: d4T + 3TC + LPV/r ; AZT + ddl + NVP

New South African Guidelines

Eligibility	Adults: CD4 <350 cells/mm ³ for TB/HIV co-infected or pregnant pts, <200 cells/mm ³ or WHO stage 4 for all others Children: Early Paediatric Treatment
Regimens	 Adults: TDF + 3TC + EFV/NVP for all new initiates; TDF + 3TC + LPV/r if failing d4T- or AZT-containing regimens/ AZT + 3TC + LPV/r if failing TDF-containing regimens Children <3 yrs: ABC + 3TC + LPV/r; AZT + ddI + NVP

Full WHO Guidelines

Eligibility	Adults: CD4 <350 cells/mm ³ or WHO stage 4 for all Children: Early Paediatric Treatment
Regimens	As in "New South African Guidelines"

Additional conditions

- New drug purchasing system (RL/FDC):
 - ARV drugs at prices set in reference list (modelled on CHAI/ GPRM/ SCMS prices)
 - Fixed-dose combination where possible
- Task shifting (TS):
 - ARV initiation and management by nurses under physician supervision
 - ARV dispensing by pharmacy assistants under pharmacist supervision

Health-state transition model National ART Cost Model (NACM)

- 6-monthly transitions between types of care and CD4-defined health states
- Number of patients initiating ART from ASSA2003 model
- Initiation rate (coverage of newly eligible pts)
 - 80% in pts with <200 CD4 cells/mm³
 - 27% in pts with 200-350 CD4 cells/mm³
- Transition probabilites and rates of mortality, loss to follow-up, and first-line treatment failure based on 2 large Johannesburg cohorts:
 - Themba Lethu Clinic Cohort (n= 9,502)
 - Harriet Shezi Children's Clinic (n= 3,748)
- Transition probabilities and rates depend on CD4 cell count/ percentage and, for adult firstline treatment, also on time on treatment
- Model is evaluated for 2010/11 to 2016/17, with a run-in between 2003/4 and 2009/10

Results: Total number of patients

Number of patients over time

→Growth in number of patients on ART over time as a result of prevalence is higher than growth in patients as a result of increase in eligibility

Regimen distribution (Adults)

Results: Regimen distribution (Children)

Results: Total cost [million 2009 ZAR]

	Full cost (Staffing and drug cost as current)			Reduced cost (With task-shifting and reference list for drug prices)			
Scenario	2010/11	2016/17	Total	2010/11	2016/17	Total	Change on Full cost
Old Guidelines	7,729	19,053	94,647	4,900	12,090	59,961	-33%
New Guidelines	8,317	22,869	110,152	5,190	14,865	70,489	-35%
Change on Old GL (Full cost)	8%	20%	17%	-29%	-22%	-25%	-
Full WHO Guidelines	9,731	25,209	124,925	6,044	16,323	79,565	-33%
Change on Old GL (Full cost)	27%	33%	32%	-11%	-14%	-16%	-

→ The total cost of the programme increases by 17% and 32%, resp., for the New Guidelines and WHO Guidelines scenarios, as a result of both higher numbers of patients and higher drug cost for TDF-containing regimens.

What does it take to test and treat

- HIV testing as the gate keeper to treatment and prevention
- Clinical sites
 - Infrastructure, health care workers, laboratory monitoring, pharmaceutical supply chain management
 - Primary health care, down-referral, task-shifting
 - Safe, effective treatment regimens, no overlapping toxicity

Treatment adherence

- Loss to initiation, loss to follow-up
- Resistance surveillance and treatment efficacy
- Procurement, cost and health care funding

South African National Strategic Plan

HIV testing – targeting annual testing

- 12 15 Million HIV test per annum (cost = R1.5 B/ann.)
- ART guideline include more populations
 - CD4+ 350
 - Any opportunistic infection (WHO II)
- Prevention interventions for HIV negatives
 - Behaviour intervention
 - Male Medical Circumcision (6,0M; R3 Billion)
 - Microbicides, PREP etc.
 - Vaccine

Population level viral load will determine future HIV transmission rates

Treatment benefits the individual and their partner(s)

Acknowledgements

 National and Provincial Departments of Health (GP, MP, NC)

SOUTH AFRICA AND THE UNITED STATES

WORKING IN PARTNERSHIP

• USAID

• NIH

